i

I can almost hear the waves sweep in, their soft susurrations,
tips of their lips breaking between my curled toes.

Noise is now everywhere I want to be
without it. Cars swoosh past Galveston beach roaring their inept monstrous lungs. I can barely

breathe. Or think. Why do trees and blades of every green thing shudder?
Because we are a hyper-intelligent insidious poison? Cats and dogs cling to us in shock and awe.

Ninety-five percent of a car’s energy goes towards moving simply itself not the passengers.
Or rather that’s 2,500 pounds of wastefulness before the crux of tissue steering the steel.

In Hermann Memorial Park a yellow-blue finch tries to sing and fails
in the roar cars shed in their wake on the I-10 adjoining the beige greenery.

I nod off under a canker tree. A whale whistles out of its water spout, breathing. I roll under
such plushness, floating with barnacles and sticky ambergris. So glued are our dream’s illogical logic.

I am a sticky carbuncle tearing through the earth’s thin breathability. It’s afternoon in Houston.
I shower again. I scrunch into a starched shirt. I rope my throat with a dead worm’s shiny excrement.

ii

My right ear is dead. When I was three
German measles like dappled freckles

grew in me, killing the nerve. My left ear
still good, at thirteen, I hear pretty well

the unprettiness in my parent’s voices as they divorce
and I listen in, in the mosquito bitten dark

roof above the living room window, then roll
on my back to swallow insignificance

in the drifting milky way above. Now
the frogs have started up. A few ducks quack. A splash

might be catfish come to nibble at the stars
tangled in cheap tabloid, suspended on the pond’s scum. My chest

makes a soft squelching sound like tossed gravel granite
settling into the decay layer at the ponds pitch black bottom.

iii

Some sounds have no feet, like running in a dream
with something chasing behind. Once, as a boy

in the Bahamas, in Freeport, in a wooded area
two older boys forced me to be

naked, and dance for them, my penis
slapping around like a snake in the beak

or eye of some predatory bird, I forget
which one it was that kept me, held

squirming, until I ran screaming and
pounding my way past the low palm trees. Power

is holding the thing that does not want you
to rape it into a display for you to play

with, you’d think. If you could think.
Those are pearls that were his eyes

nothing of him that fades but suffers.

In Emily Dickinson’s poem “Because I Could Not Stop for Death” the speaker’s voice displays an intensely ironic yet calm attitude towards death. Throughout the poem, Dickinson’s primary poetic device is her unexpected coupling of the metaphor of death as a carriage ride with the personification of death as the polite driver of the carriage, a perfect commingling of metaphor and personification. But it is Dickinson’s brilliant use of the poetic devices of consonance and assonance that generates the wonderful musical sense of motion that gives life to the passage of time in the poem, a musicality that allows the reader to feel the carriage of death itself moving though time.

Read the rest of this entry »

- after the 2014 mid-term elections

Tuesday was wet. We couldn’t have bothered to vote.
Panhandlers huddle, unlike football players, anonymous

under a corporate freeway. Chubby constables
watch them from their warm cars. Is politics

what happens on FOX or CNN
in some distant country? We wait

in lines for a hot latte to warm our hands
at Starbucks, muttering before starting second jobs

assembling complaints of failures on a phone line.

Copyright © 2014 Kurt Lovelace, All Rights Reserved

It used to be beautiful but people got there
with ideas. I don’t know why a parking lot

should cover the green velvet moss that wrapped
the long slippery slate-stone path to the water

under thick green sun-spackled trees that was like walking
through golden pollen hovering inside the vest of a vast leprechaun

before opening out onto a beige pebbled beach
of bodies bobbing naked in the sunned shallows

or reclining like purposeful porpoises that Manet
or Seurat would gladly have painted, hips

and breasts, with their delicate French brushstrokes.
I decline the five dollar asking price

and drive on, back to Austin, talking to myself
feeling like Matthew McConaughey in a Mercedes commercial,

famous in my own mind, alone, and bewildered.

 

In Soonest Mended, through a humbling out of self by means of a sequence of self-referential questions and answers, through a process of bringing forth by rejecting and flipping answers and questions around, through a discourse that levels itself out by qualification as it proceeds, John Ashbery achieves a beautiful and stunning sublimation of self through the mere act of talking, thereby discovering, almost as if by accident, the nature of the poetic truth he had, apparently, been aiming for all along.

I posit that Ashbery hones a reductionist, almost mathematical, technique for approaching the truth. His speakers engage in a series of approximations to the “truth” using argumentative qualifications. It is precisely these qualifications that allow the speakers to wend their way to truth by discovering, recovering, and discarding the many “truths” — these weaker version of themselves — that argumentatively lie along the path of such self-referential discourse. This is a key technique used within almost all of Ashbery’s poetry: talk that uncovers truth by qualifying itself at every turn.

Read the rest of this entry »

Poetry cannot be translated. So too, other than for giving a reader the raw idea of what is being said, any literal translation is especially negligible. The translator must be someone capable of writing decent if not inspired English poetry, whatever that might mean. Therefore, if one does attempt the translation of a poem, it must be ruthless, a culling from the bloody heart of both tongues. In other words, one may only create a poem in the target language that is its own poem with echoes, distortions, and intentions pointing to those places that the original also points out. So, that being said, here are three of my favorite poems from the Spanish, German, and French by Neruda, Rilke and Prevert, respectively.

These translations are very much, in an effort of love and intellect, an attempt to convey the beauty, wordplay and sound-play in the originals — and this explains some of my  perhaps more daring  “choices” — first person tense, ellipses, metaphor shifts, occasional sound emphasis over word sense — choices I prefer to call “intelligently risky”  as they are collectively my attempts to “transmogrify” these lovely poems into some semblance of a worthy English simulacrum.  Caveat emptor!

Árbol
Anoche al apagar la luz
se me durmieron las raíces
y se me quedaron los ojos
enredados entre las hojas
hasta que, tarde, con la sombra
se me cayó una rama al sueño
y por el tronco me subió
la fría noche de cristal
como una iguana transparente.
Entonces me quedé dormido.
Cerré los ojos y las hojas.
Pablo Neruda

Tree

Last night, putting the light
out, my deep roots slept
but my eyes strayed, open
tangled in between leaves
until, later, the shadow
of a branch fell over my dream
and I rose up into the trunk
of the cold night, a crystal
transparent iguana.

I slept soundly then.

I closed my eyes and my leaves.

translated by Kurt Lovelace,
Copyright 2014 All Rights Reserved


Herbsttag

Herr: Es ist Zeit. Der Sommer war sehr groß.
Leg deinen Schatten auf die Sonnenuhren,
und auf den Fluren laß die Winde los.

Befiehl den letzten Früchten voll zu sein;
gieb ihnen noch zwei südlichere Tage,
dränge sie zur Vollendung hin und jage
die letzte Süße in den schweren Wein.

Wer jetzt kein Haus hat, baut sich keines mehr.
Wer jetzt allein ist, wird es lange bleiben,
wird wachen, lesen, lange Briefe schreiben
und wird in den Aleen hin und her
unruhig wandern, wenn die Blätter treiben

Rainer Maria Rilke

Fall Day

God! Its about time! Summer was so fat.
Now shadows drag over the sundials,
and in meadows the wind rips loose!

Oh, let our last fruits fatten into fullness;
give us just two ripe sun-drenched days
plumping all into ripeness till hither and thither
the last sweet drops drain into swarthy wine.

Whoever has no house, you will not build it now.
If you are alone, it will be for a long time,
you will stay awake, reading, writing long letters
as you walk alone, shuffling, here and there,
disturbed, wandering where the leaves tremble.

translated by Kurt Lovelace,
Copyright 2014 All Rights Reserved

Déjeuner du matin

Il a mis le café
Dans la tasse
Il a mis le lait
Dans la tasse de café
Il a mis le sucre
Dans le café au lait
Avec la petite cuiller
Il a tourné
Il a bu le café au lait
Et il a reposé la tasse
Sans me parler
Il a allumé
Une cigarette
Il a fait des ronds
Avec la fumée
Il a mis les cendres
Dans le cendrier
Sans me parler
Sans me regarder
Il s’est levé
Il a mis
Son chapeau sur sa tête
Il a mis
Son manteau de pluie
Parce qu’il pleuvait
Et il est parti
Sous la pluie
Sans une parole
Sans me regarder
Et moi j’ai pris
Ma tête dans ma main
Et j’ai pleuré.

Jacques Prevert

Breakfast at the Dinner

He pours coffee
into the cup.
He pours milk
into the cup of coffee.
He sprinkles sugar
atop the café au lait,
and with a little spoon
stirs it round.
He finishes his café au lait.
He reposes cup in saucer.
Not one word spoken,
he lights up
a cigarette.
He blows round
smoke rings.
He taps ash
into the ashtray.
Never speaking to me,
never regarding me,
he readies to leave, places
hat on head,
throws on his coat
because rain is splashing down
pouring into puddles
as he leaves me,
turning into the splashing
rain, never speaking
nor regarding me once.
And I, eyes
splashing into the ground
of my hands,
cry.

translation by Kurt Lovelace
copyright 2014 All Rights Reserved

Note: this article is intended for undergraduate math majors, preferably seniors, but freshman will benefit from the look ahead, at what is expected to be known by them when they are seniors, as well as entering graduate students.

I am readying myself for the GRE math subject exam in the late Spring, and therefore reviewing all four years of undergraduate mathematics at this time.

In what follows, I will be summarizing every major area of undergraduate mathematics, as follows:

  1. Geometry: Plane, Elliptic, Hyperbolic, and Affine
  2. Linear Algebra
  3. Vector Analysis
  4. Real Analysis
  5. Complex Analysis
  6. Topology
  7. Ordinary Differential Equations
  8. Fourier Analysis, Lebesgue Integration and General Transform Theory
  9. Probability Theory
  10. Abstract Algebra
  11. Graph Theory
  12. Combinatorics and Algorithmic Complexity
  13. Set Theory and Transfinite Arithmetic
  14. Basic & Analytic Number Theory
  15. Partial Differential Equations
  16. Differential Geometry

If you are a student of any subject, then I hope you have already asked yourself at times the question “What does all of this mean? What is it for?” if you are as I am, a mathematics major, then I believe that this question is particularly important. For one can too often get lost in the forest, standing amid the numberless trees, each one a bit different from its neighbors yet all oddly familiar, somehow similar, like wondering through a waking dream.

This is neither an idle nor a superfluous question. Call it “the big picture.” Call it what you will. It is important to know the gist and the connections between different areas of ones subject, and to know each area for what it really is about.

———————————————————————————————————————————-
Linear Algebra

Let’s look at linear algebra. The matrix is the lingua franca tool of linear algebra, and so linear algebra is the study of vector spaces and their transformations using matrices. After a first course, one should know the axioms that define a vector space, the algebra of matrices, how to express the structure of vector spaces using matrices, and especially how, given the basis of a vector space, to represent any transformation of that vector space using a matrix, and how to use and calculate eigenvalues and eigenvectors. Lastly, the key theorem of linear algebra is to know the 8 distinct conditions that each alone can guarantee a matrix is inevitable. And that is it, the heart of an entire semester of undergraduate linear algebra summarized in one paragraph. Again, in a nutshell: basic linear algebra is the study of the transformation of vector spaces into one another and understanding equivalent conditions under which a matrix is invertible.

What is linear algebra used for? Everything, and almost everywhere, is the short answer. Anytime you seek a first approximation to some problem, it is likely that you will be using linear algebra. In graph theory matrices are used to represent a graph’s structure in a precise and concise manner. In abstract algebra, matrices are used in the representation of groups and other algebraic structures. And linear algebra comes up in both ordinary and partial differential equations, differential geometry, knot theory, number theory, and almost everywhere else. Learn it well, know it well if you are going to be doing research in pure or applied mathematics.

If one takes a fourth year, second semester of linear algebra, often considered “part 2″ of linear algebra studies, then one will likely encounter — inner product spaces, direct sums of subspaces, primary decomposition, reduction to triangular and Jordan forms, both rational and classical forms, dual spaces, orthogonal direct sums, bilinear and quadratic forms, and real normality — among the main topics.

Here are some great free full textbooks to download for reference or study:

Linear Algebra by Jim Hefferon. 499 pages. [direct link to whole book.]

Linear Algebra. David Cherney, Tom Denton & Andrew Waldron. 410 pages. [direct link to whole book]

-=KuRt=- © 2013 Kurt Lovelace – All Rights Reserved

Euler’s Characteristic Formula V-E+F = 2

How is it that for thousands of years the best minds in mathematics did not see the fundamental relationship that, in any regular polyhedron, the sum of the vertices and faces minus the edges equals two? Although this question is interesting, no attempt will be made to answer it. Yet the question, merely by being asked, serves to highlight the tremendous stature of Leonard Euler.

Euler worked from first principles, digging into a topic by performing calculations to get a feel for the shape and edges of a problem, then developed conjectures and proofs based on such research. And so, Euler must have tabulated the edges, faces and vertices of shapes such as the platonic solids to thereby notice this relationship. Perhaps it took an almost childlike playfulness to discover this relationship. Yet it is all speculation. The only fact is that Euler did discover that V-E+F=2 where V, E, and F are, respectively, the vertices, edges and faces of a regular polyhedron

I first learned of Euler’s formula in a senior course on graph theory taught by the Polish graph theorist Dr. Siemion Fajtlowicz. Therefore, let me provide a few definitions before offering a compact proof that V-E+F=2 using basic graph theoretical methods.

Definition. A graph consists of a non-empty set of vertices and a set of edges, possibly empty. If an edge E exists, then it will be related to an unordered pair (a,b) of vertices in V. We may write G=(\{V\},\{E\}) to denote the graph.

A graph is finite if both the vertex set and edge set are finite. A graph that is not finite is infinite. The size of a graph is the number of vertices. The order of a graph is the number of edges. All graphs discussed in this article are finite.

Immediately note that if we are given one edge, then there exist two vertices — because an edge must connect to something and that something will always be a vertex. Two vertices are incident if they share a common edge and said to be adjacent. An edge with identical ends is called a loop while an edge with distinct ends is called a link. A graph is simple if it has no loops.

The degree d(v) of a vertex in a graph G is equal to the number of edges in G incident with v where each loop counts as two edges. Thus, a vertex with two edges has degree 2 because the degree of the other two vertices would be one each, and so the sum of the degrees of all the vertices would be 4. From this we have immediately the following two theorems.

Theorem 1. The sum of the degree of the vertices of a graph equals twice the number of edges. That is

\displaystyle \sum\limits_{i/G}{d({{v}_{i}})}=2e

proof. If a graph has no edges, then e=0 and the theorem is true because the sum of the degree of the vertices of a graph with no edges must, by definition, be zero. If a given vertex has an edge, then there must be a second vertex connected to the first vertex by the given edge and so the sum of the degree of the vertexes will be 2, even if the edge were a loop beginning and returning to a single vertex the degree of that vertex due to the loop would still be 2.

Now, each additional edge added to the graph will increase either the degree of the vertex it is connect to and add one additional vertex or else it will add one degree each to two vertices that already exist. Thus, each time an edge is added, the degree count of the vertices increases by 2. Therefore, the sum of the degree of all the vertices will always be simply twice the number of edges present.

Theorem 1.1 The number of vertices in a graph of odd degree is even.

proof. Let {{v}_{1}},{{v}_{2}} be sets of vertices where the {{v}_{1}} is of odd degree and {{v}_{2}} is of even degree. Then, from Theorem 1, we must have that

\sum\limits_{i/G}{d({{v}_{1}})}+\sum\limits_{i/G}{d({{v}_{2}})}=\sum\limits_{i/G}{d(v)}

but we have already established that

\sum\limits_{i/G}{d({{v}_{i}})}=2e

and therefore we must have

\sum\limits_{i/G}{d({{v}_{1}})}+\sum\limits_{i/G}{d({{v}_{2}})}=2e

\sum\limits_{i/G}{d({{v}_{1}})}=2e-\sum\limits_{i/G}{d({{v}_{2}})}

but

\sum\limits_{i/G}{d({{v}_{2}})}=2{{e}_{2}}

so

\sum\limits_{i/G}{d({{v}_{1}})}=2e-2{{e}_{2}}=2(e-{{e}_{2}})=2{{e}_{1}}

is even. Thus, we have that the sum of the vertices in a graph of odd degree is even. Now, we will need the following definitions to proceed.

Definition. A cycle is a closed chain of edges. A connected graph that contains no cycles is a tree.

Definition. A spanning tree of a graph G is one that uses every vertex of G but not all of the edges of G.

Every connected graph G contains a spanning tree T as a subgraph of G.

Definition. A planer graph is one that can be drawn in the plane without crossing any edges.

Definition. A face in the plane consists of both unbounded and bounded regions.

The last definition allows us to say that the number of “faces” of a finite line segment in the plane is 1, but that the number of faces of an infinite line is 2, one for each side that the line divides the plane into, and that the number of faces of a circle in the plane is 2, one corresponding to the inside and the other to the outside of the circle one being the unbounded and the other the bounded region.

Now we are ready to prove Euler’s formula as it may be stated in graph theory.

Theorem 2. If G is a connected planer graph with vertices v, edges e, and faces f, then

\displaystyle v-e+f=2

proof. Let T be a spanning tree of a graph G. Then the number of faces f=1 and the number of edges e= v – 1 is true for the spanning tree T of G and so we have v-(v+1)+(1)=2 and our formula is true. Now, G may be constructed from T by adding edges to T, but each time we do so we are adding a new face to T. Therefore, with the addition of each new edge, e will increase by 1 and f will increase by 1. Therefore, all of these additions cancel out and we have our formula.

Now, a homomorphism exists between polyhedron and graphs in that a connected plane graph can be uniquely associated with a polyhedron by making any face the flat unbounded part of the plane. Therefore, Euler’s formula is true for polyhedron. We can therefore immediately prove:

Theorem 3. Exactly five platonic solids exist.

proof. Let the number of edges and faces be n and the number of edges each vertex is incident to be d. If we multiply nf, we get twice as many edges because each edge belongs to two faces, so nf is the number of faces multiplied by the number of edges on each face. Likewise, with dv each edge is incident to two faces so that we have dv=2e so that we have the equality

nf=2e=dv

or

e=\frac{dv}{2} and f=\frac{dv}{n}

Now, placing these into Euler’s formula, we get

v+\frac{dv}{n}-\frac{dv}{2}=2

or

(2n+2d-dn)v=4n

But both v and n are positive integers and for (2n+2d-dn)v=4n to be true, we must have that

2n+2d-dn>0

or

(n-2)(d-2)<4

and so there are just five possibilities for the values of n and d and each of these corresponds to one of the five platonic solids, so that we have

n=3,d=3 is a tetrahedron
n=3,d=4 is a hexahedron also known as a cube
n=4,d=3 is a octahedron
n=3,d=5 is a dodecahedron
n=5,d=3 is a icosahedron

the 5 Platonic Solids

QED.

© 2012 Kurt Lovelace – All Rights Reserved

At Marfreley’s Bar in Houston, Texas

In a dim lit mural behind the bar,
two swans amble in front of a plantation:
its white house lies against the river, lonely

for the cover of more trees that the artist
left out, as the rushing water
empties into the dark dandelion breeze

of rewritten histories. And I had wanted to see
a single woman out, tonight, sitting
alone, like me at the bar, looking

at their life, the plantation, the swans swallowing
small sips of whatever they find in front
of themselves, any parts of a life that might

make sense, tell me I have done the right things.

© 2012 Kurt Lovelace – All Rights Reserved

———————————-

Ghazal to Disquietude

1

Drowned in the honk-squeal above the guard rail, I can almost hear
waves sweep in as the soft susurration in the tip of their lips melts the sand between my curled toes.

Noise is now everywhere I want to be
without it. Cars swoosh past Galveston beach roaring their inept monstrous lungs. I can barely

breathe. Or think. Why do trees and blades of every green thing shudder?
Because we are a hyper-intelligent insidious poison? Cats and dogs cling to us in shock and awe.

Ninety-five percent of a car’s energy goes towards moving simply itself not the passengers.
Or rather that’s 2,500 pounds of wastefulness before the crux of tissue steering the steel.

In Hermann Memorial Park a yellow-blue finch tries to sing and fails
in the roar and wall of sound the cars shed in their wake on the I-10 adjoining the beige greenery.

I nod off under a canker tree. A whale whistles out of its water fountain, breathing.
I roll under such plushness, floating with barnacles and sticky ambergris. So glued are our dream’s illogical logic.

I am a sticky carbuncle tearing through the earth’s thin breathability. It’s afternoon in Houston.
I shower again. I scrunch into a starched shirt. I rope my throat with a dead worm’s shiny excrement.

2

My right ear is dead. When I was three
German measles like dappled freckles grew in me

killing the nerve. Now, left ear still good, I hear pretty well
the unprettiness in my parents voices as they divorce:

the light fades as I listen in, on the mosquito bitten dark
roof above the living room window, then roll on my back

to swallow my insignificance in the drifting milky way above.
Now the frogs have started up. A few ducks quack. A splash

might be catfish come to nibble at the stars
tangled in cheap tabloid floating on the pond’s scum.

Pain makes a squelch in my chest like tossed gravel
settling into decay layer at ponds pitch black bottom.

© 2012 Kurt Lovelace – All Rights Reserved

———————————-

Grading the Weekend

While sipping coffee, I read what one student wrote:
“The surviving fifty rare whooping cranes
with their seven-foot wingspread that propels them
in their annual migration from northern Canada
to the Gulf of Mexico fly unerringly and
swiftly overhead as they migrate southward
using a kind of built-in radar
in their search for winter quarters
near Aransas Pass.”

Surviving fifty myself, feeling rare and whooping
with my six-foot slouch that propels me nowhere
in my daily migrations from the kitchen to the couch,
I live by the Gulf of Mexico, sleep unerringly and
swiftly, undercover, my dreams migrate southward
using a kind of built-in slinky
in search for vaginal quarters
near my wife’s Aransas Pass.

To be surviving melanoma is rare
with its seven wretched drugs I puke, that propels
me out of the gothic hospital to monthly migrations of chemo;
swimming in the Gulf of Mexico, on my back, I float unerringly and
slowly, overheard, the nurses’ whispers migrate southward
out of memory, which is a kind of built-in shit-breeder
when I am in pain and searching for the way out
near the dark rings of Uranus.

But survival is everything rare as whooping
or her pubic hair spread to propel me
in my daily migrations from her coffer to wherever
it is in the Gulf of Mexico I am off to, I unerringly
admit to caring enough to love her butt
less than I ought too as I migrate southward
using a kind of built-in stupidity
in my blindly succumbing to what is expected of me
clearly perfecting it into a fairly fucked life.

© 2012 Kurt Lovelace – All Rights Reserved

———————————————————

Litany

See the purple and green crayon alphabet scrawled on yellow sticky notes stapled to tiny Glen Hills cardboard orange juice containers sucked empty by a strawberry-headed freckled girl named Melissa Alexander Winsum,

See the cardboard, folded and wax coated, that once held the orange juice within it, was wood that came from somewhere green and quiet with squirrels that stretched out on the upholding limbs sucking towards the sun their green certitude of elm or pine or oak,

See how Melissa tied together her carton creation with thick pink fuzzy wool string pulled through holes in the juice containers pricked with a three-fifths whittled down number two Venus pencil she over sharpened while working excited in Miss Thurstin’s after school art class last Tuesday,

See how the wool string grew out of a sheep’s skin, that then kept it warm through a snowy Spring, how that wool sprouted, cell upon cell, a protein made from the very grass the sheep was grazing on, from x-ray sun to chlorophyll to sheep’s cud chewing transformed to the wiry gray mat of wool dyed pink, now holding aloft 26 spent juice containers wobbling in the wind the whole of our English alphabet.

© 2012 Kurt Lovelace – All Rights Reserved

———————————-

Midnight Recital

Kneeling to untangle my dog’s leg from its leash,
how did I get here, walking a pit bull in the dark
under the sour leaves of drought resistant Texas oaks?
How have these years colluded to put me
with a woman who doesn’t like to be touched
as if my life were still attached
to a former life, lived in felt robes, kneeling,
questioningly, before God’s dead silence?
Why do I sometimes whisper beatitudes in Latin
when grinding roasted coffee beans for breakfast?
Why can’t a fuck be just a fuck like breathing
or the necessary forward movement of starlight
entering my eyes from Polaris when I look up?

Why is my life so intertwined that it folds me
into fractal compartments that expand, as if
from each decision, outward, new enclosures grip me
as I venture forward, faster than any logic I can conjure?
Should I kill politicians to address society’s wrongs?
Or open a shop and sell cracked imported Chinese
Chia Pets? Or get to the lunar surface to erase
the names of loved ones astronauts left behind?
How can this sticky motion of salt and water
hoisted on these dry branches of bone
discern a purpose, lost among thin pricks of starlight
that amble like ancient animals into the night?

© 2012 Kurt Lovelace – All Rights Reserved

———————————————————

Put Some Relish on Your Plate, Pontius Pilate

I started out believing in everything,
the open field, plow in hand, horse
waiting to be worked, words
hedged in the furrow, irises
open to the moment of opening

as if posturing a proof were proof enough
but without the heavy lifting of burdens,
the concrete blunders one must make, clearing
the way to ubiquitous insight.
If only my own desires would stop

helping the scrunched imp of all these days
rolled-up into aphasias of dreaming
that stream down like drops of sunlight
through the wet branches of Spring
it might be enough. Perhaps

I may ask you about it, someday,
and you will tell me everything I have every wanted
was within reach
if only I would have put out
my hands, wide palms like bells ringing

as they clap at a wedding, a wake or just praise
at the hours and minutes granted to us
I don’t know.

Put your fears in a little box and smoke it
not like this warm interrogatory weather
we’ve been having, that peels
shirts from bodies with an utter unconcern that is neither
here nor there.

-=KuRt=- © 2012 Kurt Lovelace – All Rights Reserved

———————————-

Everest

I grasp the impulse that might be driving you
to pity me in some odd way for being flabby and fifty
to your skinny and twenty, but you know, I like most
people stopped aging in my head at twenty-one, the
mental self-image of a nonstop Sid vicious, smiling at
you still trying to figure yourselves out, while we
older folk are done with nothing and wondering
everywhere we still can, asking better questions than
the thin shit we dredged up in our well-spent
grassy laid bare-assed whistling halleluiah youth.
And you listen to nothing we say all day with piercing
eyes as we watch you climbing our mistakes.

© 2012 Kurt Lovelace – All Rights Reserved

This week, Professor Siemion Fajtlowicz assigned two home work problems:

1. How many graphs with vertices 1 … n are there?

2. Up to isomorphism, how many graphs are there with n vertices?

3. If you invite 6 random people to a party, show that 3 of them will know each other or 3 of them will be mutual strangers — and show that this is guaranteed to always be the case — but only if you invite a minimum of 6 random people to the party. It will not be the case if we only invite 5 random people or 4 random people, et cetera.

____________________________________________________________________________________________________________________________
Question 1 and 2 may appear to be identical questions, but they are not at all identical though they are related.

Question 1 is asking for the number of elements of S. Question 2 is asking for the number of elements of the quotient G\S, a very different and much more difficult question.

Theorem. There are

\displaystyle {{2}^{\left( \begin{matrix} n \\ 2 \\ \end{matrix} \right)}}

graphs with vertex set \displaystyle \{1,2,3,...,n-1,n\} .

Proof. The question is easily answered. Given n vertexes, if we start from vertex 1 and connect an edge to each of the remaining vertexes, so that 1 goes to 2, 1 goes to 3, and so on until 1 goes to (n-1) , and 1 goes finally to n. Now, including the null edge or simply 1 itself connected to nothing, which is a legitimate graph, we have that there are n graphs. Repeating this for each additional vertex, and taking into account that the edge may originate at either one of the vertexes making for two graphs — if allowing full duplicates — then we will have that there are exactly,

\displaystyle ^{1+2+3+...+(n-1)+n}

possible graphs raised to the power of 2 to account for starting at either vertex, which gives us:

\displaystyle {{2}^{1+2+3+...+(n-1)+n}}={{2}^{\sum\limits_{i/{{\mathbb{Z}}_{+}}}{i}}}={{2}^{\frac{n(n+1)}{2}}}

Therfore, the number of graphs with vertices 1 to n are:

\displaystyle {{2}^{\left( \begin{matrix} n \\ 2 \\ \end{matrix} \right)}}

and this is simply a more compact way of writing the RHS of the previous result using binomial coefficients. QED

____________________________________________________________________________________________________________________________

Theorem. Up to isomorphism, there are

\displaystyle \frac{1}{n!}\sum\limits_{n\in \sum\nolimits_{n}{{}}}{{{2}^{o\left( \sigma \right)}}}

graphs with n vertices.

The answer to the question is much more difficult, because the answer involves some hefty but basic machinery from Group Theory and Combinatorics involving Burnside’s Lemma and Polya’s Enumeration Theorem such that this question may be reworded in those terms, so that it becomes:

How large is the set \displaystyle \sum\nolimits_{n}{{}}\backslash S where \displaystyle \sum\nolimits_{n}{{}} denotes the symmetric group on n letters and \displaystyle S is the set of graphs with vertex set \displaystyle {1,2,3,...,n-1,n} ?

The answer is

\displaystyle \frac{1}{n!}\sum\limits_{n\in \sum\nolimits_{n}{{}}}{{{2}^{o\left( \sigma \right)}}}

where \displaystyle o\left( \sigma \right) denotes the number of \displaystyle \sigma orbits on the set.

____________________________________________________________________________________________________________________________

At any party with 6 guests, either 3 are mutual friends or else 3 are mutual strangers. That is, the symmetric Ramsey Number R(3,3) = 6

If we consider just one person, then the other five must fall into one of the two classes of being either a friend or a stranger. This follows immediately from the pigeonhole principle, namely that, if m pigeons occupy n holes where \displaystyle n<m , then at least one hole contains:

\displaystyle \left\lfloor \frac{m-1}{n} \right\rfloor +1

pigeons, where \displaystyle \left\lfloor {} \right\rfloor is the greatest integer function. The proof of this follows from the fact that the largest multiple of n that divides into m is the fractional part left over after n divides m-1 or

\displaystyle \left\lfloor \frac{m-1}{n} \right\rfloor

and so for n pigeons, we get

\displaystyle n\left\lfloor \frac{m-1}{n} \right\rfloor

pigeons that could be put into \displaystyle \left\lfloor \frac{m-1}{n} \right\rfloor holes. But we have m pigeons, and so there must be more than this many pigeons in the holes.

Now, for our problem, we have two classes, friends and strangers. If we choose one person, then that leaves 5 people with whom that person is either a friend or a stranger. And so, by the pigeonhole principle, for five objects going into two classes we must have at least:

\displaystyle \left\lfloor \frac{5-1}{2} \right\rfloor +1=3

members in one of the classes. In terms of a graph theoretical viewpoint, we have, starting with one vertex extended out to the other five “people” vertexes, that:

where the red edges represent friends and the blue edges represent strangers. We easily see that, regardless of how we choose one of our 2 colors, 3 of them must be blue or else 3 of them must be red, for if we have five red, then we have met the required condition that at least 3 be red, and likewise if 4 are red, we again fulfill the requirement that at least 3 be red; and so, this whole sequence of argument applies if we swap blur for red. Therefore, we are always guaranteed that there are 3 mutual friends or else that there are 3 mutual strangers in any group of 6 people. QED

In terms of Ramsey Numbers, the statement would be written \displaystyle R(3,3)=6 .

This is utterly fascinating, because what this is really telling us it that there is a type of structure built into any random finite set. In this case, for any binary operation or else any question or property that has two values, we have it that any finite set of 6 is sufficient to support there being 3 of one or 3 of the other of that property, and that one of the two sets of 3 always exists inside of the 6 items.

This is a glimpse into a type of “deep structure” embedded within the fabric of finite sets. This is more than merely surprising, as one should not really be expecting to find any such structure whatsoever in a random set.
____________________________________________________________________________________________________________________________

Going somewhat beyond this homework problem, from experimental math studies using Mathematica, I conjecture that:

\displaystyle R(n,n)=\frac{1}{12}(3{{n}^{4}}-20{{n}^{3}}+63{{n}^{2}}-82n+48)

holds for n<=20 in a completely trivial and weak algebraic sense that the Ramsey Numbers in this range do indeed appear in this formula.

However, there is no natural or reasonable theoretical connection whatsoever between this formula and Ramsey Numbers other than the search for generating functions and sequence matching studies that I conducted. So, for n = 3 to 20 this formula yields:

\displaystyle \text{R(3,3) = 6}
\displaystyle \text{R(4,4) = 18}
\displaystyle \text{R(5,5) = }49
\displaystyle \text{R(6,6) = }116
\displaystyle \text{R(7,7) = }242
\displaystyle \text{R(8,8) = }456
\displaystyle \text{R(9,9) = }793
\displaystyle \text{R(10,10) = }1,294
\displaystyle \text{R(11,11) = }2,006
\displaystyle \text{R(12,12) = }2,982
\displaystyle \text{R(13,13) = }4,281
\displaystyle \text{R(14,14) = }5,968
\displaystyle \text{R(15,15) = }8,114
\displaystyle \text{R(16,16) = }10,796
\displaystyle \text{R(17,17) = }14,097
\displaystyle \text{R(18,18) = }18,106
\displaystyle \text{R(19,19) = }22,918
\displaystyle \text{R(20,20) = }28,634

which all fall nicely into current best-known intervals for these numbers. But these values are essentially nonsense. However, it is currently believed that \displaystyle \text{R(5,5) = }43 rather than 49. But there is no polynomial expression that yields 43 and the other lower already known numbers in the sequence of Ramsey Numbers evident from running long and large searches for such. Therefore, I believe that any meaningful approximate or asymptotic formula must be non-polynomial.

Therefore, my intuition says that there may well exist an exponential, non-polynomial expression for the Ramsey Numbers — perhaps similar to the P(n) function of Rademacher such as

\displaystyle p(n)=\frac{1}{\pi \sqrt{2}}\sum\limits_{k=1}^{\infty }{\sqrt{k}}{{A}_{k}}(n)\frac{d}{dn}\left( \frac{1}{\sqrt{n-\frac{1}{24}}}\sinh \left[ \frac{\pi }{k}\sqrt{\frac{2}{3}\left( n-\frac{1}{24} \right)} \right] \right)

where

\displaystyle {{A}_{k}}(n)=\sum\limits_{0\le m<k;\ (m,k)=1}{{{e}^{\pi i\left[ s(m,k)\ -\ \frac{1}{k}2nm \right]}}}.

But then I may be dreaming here because there need be no sequential connection between one of these numbers and the other — if each is a unique value in it’s own problem space.

What I find frustrating with papers on Ramsey Numbers that I have read is their lack of a more probing approach. We know that calculating Ramsey Numbers is NP-hard. One paper even suggested that this is Hyper-NP hard — but did not specify in what manner they meant this to be true. Most likely they were referring to the absurdly rapid exponential growth of the possible solution space. But where are the more basic insights into the nature of these numbers? Most of what we have now is not much beyond Paul Erdős work in the 1930’s!

In a recent paper on Ramsey Numbers, the physicist Kunjun Song, said: “Roughly speaking, Ramsey theory is the precise mathematical formulation of the statement: Complete disorder is impossible. or Every large enough structure will inevitably contain some regular substructures. The Ramsey number measures how large on earth does the structure need to be so that the speci ed (sic.) substructures are guaranteed to emerge.”

I think that we have yet to ask ourselves the deeper questions to get further along here. I am now researching the different ways in which the same questions may be asked, such as via Shannon limits of graphs and quantum algorithms to see what pure mathematical insight might be gleamed from these approaches. I am looking for good questions that, if properly phrased, should provide a road-map for further fruitful research.

© 2012 Kurt Lovelace – All Rights Reserved

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: